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ABSTRACT
Understanding the collective behavior of complex spin textures, such as lattices of magnetic skyrmions, is of fundamental importance for
exploring and controlling the emergent ordering of these spin textures and inducing phase transitions. It is also critical to understand
the skyrmion–skyrmion interactions for applications such as magnetic skyrmion-enabled reservoir or neuromorphic computing. Magnetic
skyrmion lattices can be studied using in situ Lorentz transmission electron microscopy (LTEM), but quantitative and statistically robust
analysis of the skyrmion lattices from LTEM images can be difficult. In this work, we show that a convolutional neural network, trained on
simulated data, can be applied to perform segmentation of spin textures and to extract quantitative data, such as spin texture size and location,
from experimental LTEM images, which cannot be obtained manually. This includes quantitative information about skyrmion size, position,
and shape, which can, in turn, be used to calculate skyrmion–skyrmion interactions and lattice ordering. We apply this approach to segment-
ing images of Néel skyrmion lattices so that we can accurately identify skyrmion size and deformation in both dense and sparse lattices. The
model is trained using a large set of micromagnetic simulations as well as simulated LTEM images. This entirely open-source training pipeline
can be applied to a wide variety of magnetic features and materials, enabling large-scale statistical studies of spin textures using LTEM.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0197138

I. INTRODUCTION

Nanoscale magnetic spin textures are of great interest both
for their fundamental physical properties and for potential appli-
cations in novel computing paradigms.1–3 Of particular significance
are topologically non-trivial spin textures, such as skyrmions, which
are stable at small sizes and can be efficiently moved with elec-
tric currents.4–6 Using skyrmions as information carriers has been
demonstrated for both neuromorphic and reservoir computing,7,8

and this motivates a thorough understanding of the properties
of both individual skyrmions and their collective behavior in
a skyrmion lattice.9,10 Of particular importance is the dynami-
cal response of skyrmions to varying external conditions, which
includes applied currents, applied magnetic fields, or changing tem-
perature, and this necessitates in situ studies. Quantitative descrip-
tors of the skyrmion size and behavior can then be extracted
to gain insights into fundamental skyrmion properties, including

inter-skyrmion interaction potentials and the large-scale orienta-
tional or translational ordering behavior.11–15

Lorentz transmission electron microscopy (LTEM) is an
increasingly used technique for studying nanoscale magnetic spin
textures such as skyrmions. LTEM enables real-space imaging with
high spatial resolution of both the magnetic domain structure and
sample microstructure.16 Furthermore, LTEM can be used for a wide
range of in situ experiments; specialized sample holders enable elec-
trical biasing and controlling the temperature of the sample, and
the objective lens can be used to apply an out-of-plane magnetic
field while imaging.17,18 There has additionally been much progress
to increase the time resolution of LTEM imaging, both through
the development of cameras with higher frame rates and through
stroboscopic techniques.19,20

When imaging with LTEM, the sample is held in a nomi-
nally field-free region of the microscope. Imaging is most frequently
performed in the Fresnel mode, in which defocused images are
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recorded, and the domain walls appear as regions of bright or dark
contrast relative to the domains.21 The resulting magnetic contrast
can be difficult to interpret, and this is frequently the case when
imaging complex spin textures, such as skyrmions.22,23 Furthermore,
a large defocus of several millimeters or more is often required
to image magnetic skyrmions due to the weaker magnetic induc-
tion component perpendicular to the electron beam direction, and
this leads to blurring and overlapping contrast from neighboring
features. In the past work, we have shown that by combining exper-
imental LTEM with micromagnetic simulations and LTEM image
simulations, it is possible to better interpret LTEM images of com-
plex spin textures,24 but this does not allow for quantitative analysis
of spin texture location or ordering in experimental images.

In this work, we present a machine learning (ML) model that
is trained on simulated data and applied to extract quantitative
information about skyrmion locations and sizes from experimental
LTEM images. A pipeline of micromagnetic simulations and LTEM
image simulations allows us to generate a set of labeled data on
which we can train our model. We demonstrate this by applying
the technique to Néel skyrmions, a spin texture for which it is diffi-
cult to quantitatively identify the size and position using LTEM. We
show that a convolutional neural network (CNN) can be trained to
identify skyrmion position, size, and shape from a single defocused
LTEM image, information that cannot be extracted either by hand or
through other analysis methods. We call a simulation-trained model
for solving this task, a SkyrmNet, and we demonstrate its efficacy by
showing how the skyrmion lattice evolves under external stimuli in
two different materials systems: Fe3GeTe2 (FGT), a van der Waals
ferromagnet, and in a metallic Pt/Co/Ir multilayer film. While the
work in this paper is restricted to looking at the size and distribution

of Néel skyrmions, the open-source training pipeline can be gen-
erally applied to perform large-scale statistical studies of other spin
textures that are suitable for imaging with LTEM.

II. METHODS
Figure 1 shows the workflow we have developed for gener-

ating training data, training a model, and applying the model to
experimental data. Each step of the workflow is built on open-
source code repositories, and it can be adapted and applied to nearly
all materials and magnetic features that are suitable for imaging
with LTEM. The workflow begins on the left side of the diagram,
with some knowledge about the material parameters for the sys-
tem of interest. These are used to simulate a wide range of possible
sample magnetic configurations using the MuMax micromagnetics
package.25

In this work, we are interested in developing a SkyrmNet to
perform instance segmentation of Néel skyrmions, i.e., identifying
each skyrmion distinct from the background and from its neighbors.
We simulated a wide range of Néel domain structures to train our
model, including skyrmion lattices with skyrmions of different sizes
and densities, Néel stripe domains, and mixed phases of skyrmions
and stripe domains. These magnetic configurations were used, along
with the relevant material parameters and imaging conditions, to
generate simulated LTEM images. Ground truth labels of skyrmion
sizes and positions were obtained directly from the magnetization
maps, and the images and labels were then used to train our CNN.
Once trained, a SkyrmNet can be directly applied to experimental
data.

FIG. 1. Flow chart for training and applying a CNN model to LTEM data. The diagram reads from left to right, beginning with material parameters for the sample that will be
imaged. These are used to perform micromagnetic simulations of potential magnetic configurations, which are used to create ground truth labels and simulate LTEM images.
A model is trained on the simulated data and can be directly applied to experimental images.

APL Mach. Learn. 2, 026120 (2024); doi: 10.1063/5.0197138 2, 026120-2

© Author(s) 2024

 09 July 2025 18:48:18

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

A. Simulating Néel skyrmion lattice magnetizations
Generating an appropriate set of magnetization configurations

is the most important step of the training process. It is critical that
the magnetic configurations in the training set, simulated using a
micromagnetics formalism, encompass a broad range of features
that could be observed during an in situ LTEM experiment. Any
features present in an experimental image that are not well repre-
sented in the training data will be omitted or incorrectly identified.
It is, therefore, important when creating training data to consider
the many effects that lead to non-idealized magnetic domain con-
figurations in experimental samples, including pinning effects and
local variations in the magnetic parameters. Failing to use a diverse
enough training set can lead the model to overfit and incorrectly
identify non-existent features in experimental data.

In the work presented here, the micromagnetic parameters
that we included were the saturation magnetization, Msat, the
exchange stiffness, Aex, the uniaxial anisotropy, Ku, and the inter-
facial Dzyaloshinskii–Moriya interaction (DMI) strength, D. These
magnetic parameters vary within any given sample around the nom-
inally measured, bulk values. Flakes of exfoliated vdW materials, for
example, will often have a non-uniform topography, with bends and
wrinkles due to strain, and this can alter the magnetic parameters

in those regions.26–28 Furthermore, the magnetic parameters of a
material are always temperature dependent. We want to apply our
model to in situ series of LTEM images obtained during heating and
cooling, and we must, therefore, be sure that the full range of mag-
netic domain structures that could be observed experimentally are
reflected in the micromagnetic simulations.

We compiled a training set of 10 000 micromagnetic simula-
tions. The simulations were of dimension (256 × 256 × 1) cells, with
a cell size of (3 × 3 × 27.5) nm. In order to accurately reflect exper-
imental domain structures, micromagnetic simulations were run
with some of the magnetic parameters varied across the simulated
sample. The simulations were given mean and standard deviation
values of Msat, A, and D and were divided into 256 in-plane grains.
The Msat, A, and D values were then chosen randomly for each
grain using the mean and standard deviation for that simulation.
The total range of these values was Msat ∈ 1.5 × 105–3.0 × 105 A/m,
A ∈ 1.1 × 10−11–1.9 × 10−11 A/m, and D ∈ 1 × 10−3–1.3 × 10−3

A/m2. The uniaxial anisotropy was kept constant with a values
of Ku = 1.5 × 106 J/m3 across all simulations, as was the external
applied field value of Bext = 0.4 T. This value of applied magnetic
field is much larger than typical experimental values and is often
necessary to stabilize skyrmions in micromagnetic simulations.29

FIG. 2. Application of a SkyrmNet to simulated data. (a) True magnetization used to simulate input images. (b) Ground-truth label of skyrmion size and position, created from
(a). (c) LTEM image simulated from (a) with defocus Δz = −2 mm and sample tilt angle Tx = 20○. (d) SkyrmNet output of (c), with the identified skyrmions shown in red and
overlaid on both the ground truth skyrmion edges (blue) and the input image. (e) and (g) Simulated LTEM images like (c), but with 50% and 100% noise added, respectively.
(f) and (h), SkyrmNet segmentation output overlaid on the ground truth for (e) and (g). (i) Loss plot when training the CNN. (j) Histogram of skyrmion sizes for ground-truth
labels and SkyrmNet predictions with 0%, 50%, and 100% added noise, across the 1000-image test set.
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The values used for each energy term were manually deter-
mined in order to ensure that a wide range of domain structures were
produced while maintaining few simulations with domain structures
other than Néel skyrmions and stripes. We performed 90% of the
simulations with a simulated grain structure and varying magnetic
parameters, while 10% were performed with uniform magnetic para-
meters across the entire simulated region. This resulted in a diverse
training set of magnetic configurations spanning a wide range of
Néel skyrmion sizes and densities.

B. Defining the ground truth
The magnetization outputs from MuMax were each used to

define a ground truth image. Our ground truth image, for instance
segmentation with two classes, is a binary image defining the size and
location of each skyrmion. There are multiple ways of defining the
skyrmion radius, because the 2π domain wall across a skyrmion has
a gradual falloff toward the “bulk” magnetization orientation.30 We
define the ground truth skyrmion location from the z-component
of the magnetization. The background magnetization points in the
+z direction, and we define skyrmions as regions where Mz <= 0.98.
Figure 2(a) shows the magnetization of a simulated Néel skyrmion
lattice, and the ground truth label is shown in Fig. 2(b).

C. Simulating LTEM training images
The LTEM training images were simulated using the PyLorentz

package, which is an open-source software suite developed for quan-
titative image analysis of LTEM images.24,31 The simulated mag-
netization maps and material parameters are input into PyLorentz
to simulate the electron phase shift through the sample. Along
with microscope parameters, including defocus and aberrations, the
phase shift is used to simulate the resulting LTEM image. Figure 2(c)
shows a simulated LTEM image from the magnetization in Fig. 2(a),
with a sample tilt of 20○ around the horizontal x axis and at a defocus
of Δz = −2 mm. Note that despite the separation between adjacent
skyrmions visible in the magnetization map, contrast from adjacent
skyrmions blends together in the LTEM image. This makes it very
difficult to distinguish individual skyrmion sizes and positions.

Unless otherwise noted, the parameters used for the simu-
lated LTEM images in this work are θx = 20○, θy = 0○, Δz = −2 mm,
accelerating voltage E = 200 kV, spherical aberration constant
Cs = 200 μm, beam coherence θc = 0.01 × 10−3 rad, and defocus
spread Δ = 80 nm. These represent reasonable microscope aberra-
tions and imaging conditions for performing LTEM, although it
should be noted that the simulation methods used here do not
include the effects of structural defects that may be present in the
sample.

D. Machine learning with a convolutional neural
network

To perform instance segmentation, we implemented a fully
convolutional neural network based on a U-net architecture that has
proven robust at image segmentation in applications ranging from
biological imaging to atomic resolution TEM.32 The 10 000 simu-
lated images were split into training and validation datasets by a
ratio of 80:20, with 1000 separately simulated magnetization dis-
tributions and images used for test data. Random noise, including
Poisson, Gaussian, salt and pepper, and contrast variation, was

added to the training images, so the model could be directly applied
to experimental data.

The model was trained for 500 epochs using a cross-entropy
loss, and the training loss and validation loss are plotted in Fig. 2(i),
which show the rapid convergence of the model. Training the model
can be performed quickly; training the model for 500 epochs took
less than two hours using an NVIDIA Tesla M10 GPU, and this
would be much faster still if performed with a current-generation
GPU.

III. RESULTS
The LTEM image shown in Fig. 2(c) was given as an input to

our model, and the output is shown in Fig. 2(d), overlaid on the
input image. The SkyrmNet-identified skyrmions are shown in red,
and the edges of the skyrmions as defined by the ground-truth label
are outlined in blue. Due to the large overlap between the ground
truth and the prediction, it is evident that the CNN does a good
job of identifying the skyrmion locations and sizes, although in the
zero-noise case (as shown here), it slightly underestimates the true
skyrmion size.

In order to demonstrate the application of a SkyrmNet to a
more realistic input image, we added noise to the simulated LTEM
input image. Figures 2(e) and 2(g) show the same image as in (c), but
with the addition of 50% and 100% Gaussian noise, G = 50% and
G = 100%, respectively, where the level of Gaussian noise refers to
the standard deviation of the distribution divided by the mean inten-
sity of the image. When carrying out LTEM imaging, there are many
noise sources, including all the types that we added to the training
data. We have previously found that our models perform similarly
well when given test data that have equivalent levels of pure Gaus-
sian noise or a mix of noise types,33 and we, therefore, use Gaussian
noise here as it is easier to quantify.

The SkyrmNet outputs, given the noisy simulated LTEM
images as inputs, are shown in Figs. 2(f) and 2(h) for the 50%
and 100% noise cases, respectively. Qualitatively, it seems that the
model performed very well for the image with 50% added noise, and
the output segmentation appears very similar to the no-noise case
shown in Fig. 2(d). In the case of the image with 100% added noise,
there are more significant deviations of the prediction from the
ground truth, and there are also some small, non-existent skyrmions
that are incorrectly identified.

Figure 2(j) shows a histogram that we used to carry out an ini-
tial test of the accuracy of our model. It plots all the true skyrmion
sizes from the 1000-image test set, as well as the histograms of
SkyrmNet-predicted sizes for 0%, 50%, and 100% added noise. We
see that in the zero-noise case, the use of SkyrmNet leads to a nar-
rower skyrmion size distribution, thus underestimating the number
of skyrmions that are both smaller, and larger, than the average.
The SkyrmNet-created histograms for noisy inputs, however, shift
to the right, indicating the SkyrmNet starts to overestimate the size
of the skyrmions as noise increases. This is interesting because, in
Figs. 2(f) and 2(h), it appeared that SkyrmNet was underestimating
the skyrmion sizes even with added noise. This demonstrates why it
is important to use a large and varied test set that represents a wide
range of spin texture sizes and densities. It also shows that cumula-
tive accuracy measurements, such as through a histogram, can give
misleading results because incorrect predictions can average out.
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A. Accuracy quantification
In order to more thoroughly assess the accuracy of our model,

SkyrmNet was used to segment all 1000 images in our test set, and
the SkyrmNet output for each image was quantitatively compared
to the ground-truth label. Quantifying the quality of a segmentation
is non-trivial, with different metrics giving more or less weight to
false positives and negatives, and with some metrics better suited
to balanced or imbalanced datasets. We, therefore, used three sep-
arate metrics: the subset accuracy,34 the F1 score,35 and the Jaccard
similarity coefficient.36 Each of these metrics quantifies the simi-
larity between a binary prediction and a binary ground truth, with
a value of 1 for identical images, but each metric gives different
weights to the recall of the prediction (whether or not the prediction
finds all parts of all skyrmions) and the precision of the prediction
(whether or not the prediction correctly identifies regions that are
not skyrmions). All three metrics were calculated for each image
and averaged across the test set, thus giving three final values for
the quality of the SkyrmNet segmentation.

One of the magnetization distributions from the test set is
shown in Fig. 3(a), with the simulated phase shift and resulting
LTEM image shown in Figs. 3(b) and 3(c). Figures 3(d) and 3(e)
show the same image as in (c), but with the addition of 10% and 50%

Gaussian noise, respectively. Figure 3(f) shows a plot of the three
accuracy metrics for our model as a function of noise added to the
input images. All three metrics show that the model performs worse
with added noise, but the decrease in performance was not drastic.
The model performed particularly well at higher noise levels accord-
ing to the subset accuracy, while the Jaccard score showed the largest
decrease in performance. The Jaccard score is commonly used to
evaluate image segmentation tasks, and we find that it gives the low-
est score of our three metrics in all cases. This is in large part due to
its sensitivity to imbalanced classes, i.e., images for which much less
than 50% of the total pixels belong to the skyrmion class. These types
of images comprised the majority of our test set, which we believe
results in the lower Jaccard score relative to the other metrics.

It can be difficult to take ML models that are trained exclusively
on simulated data and then apply them to experimental data. One
reason for this is that the experimental data might not be represented
in the training dataset. This is especially prevalent for LTEM imaging
where, unless the microscope is frequently calibrated, the imaging
parameters cannot be known precisely. In particular, the defocus
and sample tilt are two parameters that make a large difference in
the resulting LTEM image, but are usually not known accurately.
In order to assess the resilience of our model to imaging conditions

FIG. 3. SkyrmNet accuracy quantification. (a) Example ground truth magnetization distribution from the test data, (b) corresponding simulated magnetic phase shift for tilt, Tx

= 20○, and (c) LTEM image simulated from (b) with Δz = −2 mm. (d) LTEM image from (c) with 10% and (e) 50% added noise. (f) Plot of the SkyrmNet accuracy vs percent
noise using three different quantification metrics. (g) LTEM image simulated from (b) with Δz = −1 mm and (h) Δz = −1 mm. (i) Accuracy plots for a SkyrmNet trained on
LTEM images with Δz = −2 mm, for input images with 10% noise and varying defocus values. (j) and (k) LTEM images simulated from the same magnetization shown in (a)
with Δz = −2 mm but with (j) Tx = 10○ and (k) Tx = 30○. (l) Accuracy plot for a SkyrmNet trained on images with Tx = 20○, for input images with 10% noise and varying tilt
values.
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that are different from those used for the training data, we simulated
LTEM images for test datasets under a range of imaging parameters
and then applied the same SkyrmNet model to all of them. This was
the same model as is demonstrated in Fig. 2, and it was trained only
on simulated data with Δz = −2 mm and Tx = 20○.

Figures 3(g) and 3(h) show images simulated from the phase
shift shown in Fig. 3(b), but with defocus values of Δz = −1 mm
and Δz = −3 mm, respectively. Both images also have 10% Gaussian
noise added. From these images, it is clear how a larger defocus value
leads to significant blurring and an apparent increase in skyrmion
size. Figure 3(i) plots the accuracy metrics for a SkyrmNet trained
only on images with a defocus value of Δz = −2 mm, which is then
applied to our test set simulated with defocus values ranging from
−1 to −3 mm, and in all cases with the addition of 10% Gaus-
sian noise. As expected, the prediction quality decreases for input
images that were simulated with defocus values that are further from
−2 mm. However, the model is still very accurate within the range
of −2 ± 0.2 mm, which represents a moderate defocus offset that is
realistic for experimental conditions.37

We next examine how an incorrect sample tilt can affect the
segmentation accuracy. Figures 3(j) and 3(k) show two simulated
LTEM images with defocus Δz = −2 mm and 10% added Gaussian

noise, which were simulated at tilt angles of Tx = 10○ and 30○,
respectively. The image simulated at a 30○ tilt shows increased con-
trast due to the larger component of the skyrmion magnetization
that is perpendicular to the beam direction. Figure 3(l) shows a plot
of the accuracy metrics of our model as a function of the input tilt
angle, with the model trained only on images with a tilt angle of 20○.
We see an expected reduction in accuracy as tilt angles move fur-
ther from 20○, but the reduction is small compared to the reduction
in accuracy caused by incorrect defocus values. There is a negligible
loss of accuracy when considering the goniometer error margin of
±2○,38 and the model performs well within a ±5○ range around the
angle used for the training dataset. This is particularly useful when
imaging single crystalline samples, as it can be necessary to adjust
the tilt angle when imaging to account for the variations in diffrac-
tion contrast that can occur during in situ experiments. Figure 3(l)
shows that a single model can be used for analysis even if the tilt
angle must be changed slightly during imaging.

B. Application to in situ experimental data
Here, we demonstrate that SkyrmNet can be effectively applied

to experimental in situ images of skyrmions. We choose two sci-
entifically relevant examples shown in Fig. 4: the temperature

FIG. 4. Application of a SkyrmNet to experimental data. (a) Tracking how a dense skyrmion lattice in FGT evolves as a function of temperature. A full field-of-view LTEM image
is shown on the left; the top row shows how skyrmions in the orange box evolve as temperature is reduced from 188 to 100 K; the bottom row shows the SkyrmNet-identified
skyrmions (outlined in red) for each image. (b) Tracking how isolated skyrmions in a Pt/Co/Ir metallic multilayer evolve under an increasing applied field from 500 to 800 G.
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dependence of a dense Néel skyrmion lattice in a vdW material12

and the effect of increasing applied field on diffuse skyrmions in
a metallic multilayer.39 The experimental data were recorded on
a JEOL JEM-2100F TEM instrument in “low-mag” mode. Two
SkyrmNet models were trained, each using the same 10 000 micro-
magnetic simulations and microscope aberration parameters stated
previously. The models are different in that they were trained with
different defocus and sample tilt values, which were determined by
the experimental conditions of each dataset. It is important that
these experimental parameters are not dictated by the CNN, as the
optimal choice for both defocus and sample tilt is highly dependent
on the properties of each individual sample and the imaging con-
ditions used. They must, therefore, be optimized by the microscope
user during the experiment. An advantage of the SkyrmNet method
is that training a new model for a different microscope or new imag-
ing conditions is fast, and the method is, therefore, easily adaptable
to different experimental datasets.

Figure 4(a) shows the application of a SkyrmNet to images
of a dense skyrmion lattice in FGT, obtained with a defocus of
Δz = −8 mm, a tilt angle of 22○, and an applied field of 500 G.
The image has been bandpass-filtered to reduce noise before seg-
mentation. FGT is an interesting material to study the behavior of
skyrmions, because its magnetic parameters change greatly between
220 and 100 K, which is the range between its ordering tempera-
ture, Tc, and the minimum temperature that can be easily achieved
in the TEM instrument using a liquid nitrogen holder. The most
stable skyrmion size is dependent on the magnetic parameters and,
therefore, changes as a function of temperature. This leads to the
formation of small skyrmions, which nucleate when field-cooling
through Tc and are gradually and irreversibly replaced by larger
skyrmions as temperature decreases. Studying this process provides
insights into the energy landscape of FGT and the nature of the
topological stability of the skyrmions.40,41

It is necessary to use a very large defocus when imaging the
evolution of Néel skyrmion lattices in FGT. The behavior of the
skyrmions is most interesting near Tc, as this is where the topological
spin textures stabilize and are most mobile, but at these tempera-
tures, FGT has a small saturation magnetization. This necessitates
using a very large defocus value to increase phase sensitivity and to
image the spin textures. The large defocus required leads to strong
blurring of the spin textures and makes it difficult to accurately
determine their size and location, thus highlighting the need for
ML-enabled analysis of these images. As shown in Figs. 3(g) and
3(h), higher defocus leads to significantly increased blurring and
an increase in the apparent skyrmion size. Without the ML-based
method presented here, it would be very difficult to determine true
skyrmion sizes in these highly defocused images.

The top row of Fig. 4(a) shows LTEM images as a function of
temperature for the same region that is highlighted by the orange
box in the left-hand image. The bottom row shows the applica-
tion of a SkyrmNet to these images, with each skyrmion shown
in red and overlaid on the input image. Qualitatively, SkyrmNet
has identified all the skyrmions in the image, whether they are
densely packed or located near gaps in the lattice that occurred dur-
ing cooling. Information about the gaps between skyrmions could
provide information about the relative strengths of pinning forces
and inter-skyrmion repulsion.10,30 In addition, from these segmen-
tation data, it would be possible to quantitatively extract the size and

deformation of each skyrmion, which could then be correlated with
local lattice order.

Figure 4(b) shows the application of a SkyrmNet to LTEM
images of a diffuse skyrmion lattice in a metallic multilayer. These
images were recorded while increasing the applied out-of-plane
magnetic field, in order to observe how the skyrmions were driven
out of the sample. The full field-of-view image is shown on the
left and was recorded at room temperature, with a defocus of Δz
= −4 mm, a tilt angle of 30○, and with a 500 G applied field. The
skyrmions shown here are similar to reported images of skyrmions
in other metallic multilayers.39 We observed many skyrmions that
were extended or deformed, and the skyrmion density was low com-
pared to what is seen in FGT. The top row of images in Fig. 4(b)
shows how skyrmions shrank and were destroyed as the applied out-
of-plane field was increased. The bottom row shows the application
of a SkyrmNet to each of these images. We are able to accurately
track both the skyrmions as they were driven out of the sample,
and also observe how the skyrmion shapes change with the applied
field.

We have, therefore, shown that a SkyrmNet, despite being
trained only on simulated data, can be applied to both an exfo-
liated flake of a vdW ferromagnet and a metallic multilayer film.
This method is especially useful when applied to in situ experiments,
as it allows for tracking the changes in skyrmion size and location
between subsequent frames. Inference of a CNN is quite fast and can
be performed in a second, depending on image size. This method
can, therefore, enable nearly real-time analysis when performing
in situ LTEM experiments.

IV. DISCUSSION
By combining micromagnetic simulations and LTEM image

simulations, we can create a training set that enables a CNN to iden-
tify the size and shape of Néel skyrmions in experimental LTEM
images. This directly enables statistical studies of Néel skyrmion lat-
tices and how they can be collectively manipulated by externally
applied stimuli. We hope, however, that the most important fea-
ture of this work is not the direct application to Néel skyrmions,
but, instead, the broader impact of the workflow we have devel-
oped. We have shown that ML models can be trained on simulated
LTEM images to accurately identify the extent of features and make
quantitative measurements that cannot otherwise be determined. As
shown here and in other studies,22–24 LTEM image contrast can be
very difficult to interpret, especially when imaging complex spin
textures such as skyrmions. Micromagnetic simulations allow for
direct modeling of these spin textures in a wide range of materials,
and these magnetization distributions can be used to create accu-
rate training labels for any magnetic feature of interest. For example,
using this pipeline, a CNN could be trained to classify magnetic bub-
bles by chirality and to distinguish type I and type II bubbles, or to
identify antiskyrmions and other spin textures for which the pro-
jected magnetic induction is very different from the magnetization.24

Using this method, therefore, a SkyrmNet could be trained to iden-
tify more complex spin textures that are otherwise more difficult to
identify.

While we hope that this method can be broadly applied to
spin textures beyond Néel skyrmions, it does have limitations. Most
importantly, a CNN can only be trained to identify features that
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are contained within its training set and applying it to experimental
data that are not well represented in training can lead to erroneous
predictions. Furthermore, we do not think it will be possible to
reconstruct the actual magnetization map with any accuracy. Fea-
tures such as domain wall width can be modeled with micromagnetic
simulations, but variations in domain wall width are not always
clearly seen in the resulting LTEM images, due to defocus. This is
especially noticeable when the in-plane components of the magneti-
zation produce negligible LTEM contrast, such as is the case for Néel
domains as demonstrated in this work. The sample must be tilted
to induced magnetic contrast, and in this case, the contrast arising
from the in-plane component of the magnetization is very subtle.
It would, therefore, be difficult to train a model to identify details
about the in-plane magnetization while maintaining a wide training
dataset. Another constraint is that we have implicitly assumed that
the magnetization is nearly uniform through the out-of-plane direc-
tion of the sample. LTEM is by nature a transmission technique and
is, therefore, sensitive only to the integrated induction and cannot
distinguish variations along the beam direction.

Despite these limitations, we believe that our method can be
broadly applied to a wide range of materials and spin textures.
A major advantage of this method is the relative ease with which
a model can be trained and adapted for each experimental dataset.
Running the micromagnetic simulations to assemble a training set is
the only computationally intensive step of the process, and it takes
on the order of days to complete. This is also the most important
step of the process because, as previously discussed, these simu-
lations must encompass the full range of spin textures that might
be observed experimentally. Once the magnetization distributions
have been simulated, creating the ground truths, then simulating the
LTEM images, and training a CNN can be completed in a matter
of hours. This means that a training set pertaining to a particu-
lar material or magnetic domain type can be used to train models
for any experimental imaging conditions. This enables the model to
conform to imaging parameters as dictated by the experiment, rather
than requiring that the experiment be performed with specific, and
potentially non-optimal, imaging conditions.

V. CONCLUSIONS
In this work, we have demonstrated that a CNN, trained on

simulated data, can be used to identify features in experimental
LTEM images that would not otherwise be identified. We have
applied this method to performing instance segmentation of in situ
images of Néel skyrmions in FGT and Pt/Co/Ir, thus obtaining the
size and shape of each skyrmion. All the steps necessary for train-
ing this model are open-source, and this method can be broadly
adapted to identifying magnetic features in any system for which
LTEM imaging is appropriate. We believe that it will enable a new
type of large-scale, statistical study of magnetic spin textures not
previously possible using LTEM.
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