
18525, ELECTRICAL AND COMPUTER ENGINEERING, CMU, MAY 2025 1

Design and Tapeout of Modulation Recognition
Accelerator Integrated into RISC-V SoC Using

28nm CMOS

Olivia Yang, Alec Bender, Majd Almudhry, Julia Anitescu, Rebecca Dettmar

Abstract - This paper presents the design and integration
of a RISC-V processor and hardware accelerator ASIC for
real-time modulation recognition, targeting low-latency
and power-efficient classification of radio signals. Two
chips were developed from RTL to layout using TSMC
28nm technology, leveraging Catapult HLS and
Chisel/CIRCT for high-level synthesis. Version 1 integrates
a VexRISC-V CPU and a Residual Neural Network
(ResNet) accelerator within a 1mm × 1mm die area.
Version 2 extends the architecture by incorporating a Strip
Spectral Correlation Analyzer (SSCA) accelerator,
increasing the die size to 2 mm × 1.25 mm. Both designs
were functionally verified in simulation, with Version 1
passing DRC and LVS checks to qualify for tapeout.

I. INTRODUCTION

The Modulation Recognition Acceleration project
aims to integrate two specialized accelerator intellectual
properties (IPs) with a RISC-V processor to improve
performance for signal processing workloads as well as
optimize the overall system for size, weight, and power. The
two specialized accelerators are a hardware Residual
Network (ResNet) for modulation classification, and a
hardware implementation of the Strip Spectral Correlation
Algorithm (SSCA) for cyclostationary feature extraction.

With the increasing complexity of wireless
communication and constrained spectrum resources,
accurate and efficient modulation recognition is essential.
Traditional software approaches lack the speed and energy
efficiency required for real-time applications, particularly in
edge or defense environments. This project addresses these
limitations by designing an ASIC that integrates digital
signal processing and machine learning in hardware.

Version 1 of this project integrated a VexRISC-V
open source CPU with the ResNet, and was taped out with
complete pre-silicon verification. Version 2 extended

Version 1 by integrating the SSCA IP with Version 1, and
was verified in RTL simulation, but did not meet
post-synthesis functionality. The specifics of the accelerator
IPs, design, and integration will be discussed in section (III),
with performance metrics in section (V).

II. PRIOR WORK

There are two previous implementations of this
design, one written in Python and running on an NVIDIA
Jetson AGX Orin and the other implemented as an
FPGA-based SoC of each accelerator separately. The
FPGA-based SoC with the ResNet accelerator was 2-5x
faster than the reference implementation, with different
configurations of the ResNet data flow accounting for the
range of speedup. The FPGA-based SoC of the SSCA
accelerator was 20x faster than the reference
implementation.1

III. DESIGN

The proposed system integrates three major functional
blocks:

● ResNet Accelerator: Implements a convolutional
neural network trained to recognize modulation
schemes from IQ data inputs. Input data is 512 bits
in fixed-point representation, and the accelerator
outputs a probability distribution over signal types.
RTL is generated using Catapult HLS from a
PyTorch model.

● SSCA Accelerator: Implements a radix-8 Strip
Spectral Correlation Analyzer to extract
cyclostationary features. It operates on 133,120
32-bit floating point inputs and is built using Chisel
and CIRCT.

18525, ELECTRICAL AND COMPUTER ENGINEERING, CMU, MAY 2025 2

● RISC-V Processor: A VexRISC-V open source
core that is generated using SpinalHDL for
configurable features. Implements RV-32I ISA.

 These blocks are connected to memory-mapped
SRAMs and MMIO control units via a shared Wishbone bus.
I/O to and from the chip is handled using the SPI protocol.

IV. VERSION 1 SYSTEM ARCHITECTURE

 FIGURE I
VERSION 1 SYSTEM BLOCKS DIAGRAM

A. Memory System

 The RISC-V core accesses a separate instruction
memory and data memory using the VexRISC-V’s
respective instruction and data bus. The CPU data memory
is connected to the shared Wishbone bus and can be read and
modified by memory instructions that address into the range
dedicated for the CPU data SRAM.

 Similarly, Version 1 has input data for the ResNet
accelerator that is populated into the input SRAM by using
store instructions addressing into the dedicated address
range for the ResNet input SRAM. By using this
memory-mapped architecture, input data for the hardware
accelerator will be controlled by writing software that
addresses into specified memory locations.

B. Accelerator Control

 Control for the ResNet accelerator is handled using
memory-mapped IO, where store instructions that are
addressed beyond the range of the memory system of the
SoC (including CPU data memory and ResNet input SRAM)
are interpreted as control signals for the accelerator. A store
instruction to the address 0xFFFF_FFFF with a data payload
of 0x1 is decoded as setting the enable signal for the ResNet
accelerator. A separate control register holding a nine-bit
value corresponding to the number of desired ResNet

invocations is configured by writing the number of batches
as the data payload of a store instruction to the address
0xAAAA_AAAA. This number of invocations must match
the number of batches of input data stored into the ResNet
input SRAM, which can hold up to 254 batches of input
data. When the ResNet accelerator is enabled, all batches
will be processed in order. Effectively, these control registers
are configured using software and specifically addressed
store instructions.

C. Accelerator Output Data

 When the ResNet accelerator is enabled, each batch of
input data is read from the input SRAM by an input SRAM
controller that keeps track of the current read address and
handles SRAM control signals, and the input data is
processed through an invocation of the ResNet accelerator.
When the ResNet accelerator asserts a done signal, the
output is stored in an output data register. This register is
part of the on-chip SPI slave module, and the data is output
live to the off-chip master whenever the chip-select line
(NSS) is asserted and the master is requesting data.
Following the SPI protocol, the data is shifted serially and
sent off-chip via the MISO pin. The output data is sent as
four 32-bit words in little-endian order, with the least
significant word transmitted first. Since the data is output
live, the master must sample the data from the slave
periodically.

D. Chip Integration and Layout of Version 1

(a)

18525, ELECTRICAL AND COMPUTER ENGINEERING, CMU, MAY 2025 3

(b)

 FIGURE II
(a) VERSION 1 FULL CHIP LAYOUT (b) FLOORPLAN

 The floorplan of the 1mm × 1mm chip was carefully
organized to minimize latency and routing complexity by
placing core logic blocks adjacent to the I/O interfaces.
Specifically, the VexRISC-V CPU and ResNet accelerator,
were positioned near the SPI interface pins to reduce critical
path lengths for data ingress and egress. Surrounding each
logic block, corresponding SRAMs were placed to ensure
local data availability with minimal wire routing congestion.
This proximity-driven layout strategy helped reduce
parasitic delays and enabled efficient power distribution
through domain-specific rails.

V. VERSION 2 SYSTEM ARCHITECTURE

 FIGURE III
VERSION 2 SYSTEM BLOCKS DIAGRAM

For the integration of the expanded system that
incorporates the SSCA accelerator along with the CPU and
ResNet accelerator, several design changes were made to
global integration as well as at the SSCA block level.

A. SSCA Instruction Memory

At the global integration level, one change that was
made is the connection of the SSCA instruction memory to
the Wishbone bus. The SSCA requires its own set of custom
instructions which can be reconfigured, and these are
streamed using the same SPI interface as the CPU
instructions. The SSCA instructions follow a similar data
flow as the input data for the accelerators, where store
instructions are processed by the CPU which then stores data
to a memory-mapped SRAM that is dedicated for the SSCA
instructions.

B. SSCA Local Memory Pre-population

At the SSCA block level, a local memory SRAM
must be populated before an invocation of the SSCA
accelerator is called. The full local memory must be
initialized with the correct twiddle coefficients required for
the fast Fourier transform upon which the SSCA is based
before any calculation is initiated. To integrate this into the
overall system, a separate SPI interface is dedicated for this
purpose, with a complete set of SPI pins set aside for the SPI
slave module that handles writing to this local memory
SRAM, and an initialization mode is used to indicate when
to write those coefficients directly into the local memory.

C. Floating Point Converter & Shared Input SRAM

The SSCA requires 32-bit floating-point data, while
the ResNet requires 16-bit fixed-point data. To
accommodate this while still guaranteeing the same data is
used for both accelerators, the chip accepts input data as
fixed-point and a fixed-to-float converter is connected to the
SSCA’s input buffer.

Additionally, since the ResNet accelerator and the
SSCA accelerator use the same input data, both use a single
input data SRAM. Control units are implemented to
facilitate the data transfer and reads from the shared SRAM
to the ResNet or SSCA accelerator.

18525, ELECTRICAL AND COMPUTER ENGINEERING, CMU, MAY 2025 4

D. Accelerator Control and MMIO

In the expanded system, the accelerator control
signals are shared between both the SSCA and ResNet
accelerators. When the accelerator enable control register is
set, both accelerators are enabled.

When the accelerators are enabled, an input handler
coordinates reads from the shared input data SRAM to move
batches of input data to the ResNet accelerator and all input
data into the SSCA accelerator’s input buffer since the
SSCA requires its input buffer to be full before it starts
computing. Once calculations are completed, the SSCA
flags that it is done and the output data can be found in the
local memory. A stream-out mode, when activated, allows
addresses in local memory to be read directly to the top-level
and streamed out through the SPI interface, so no dedicated
output buffer is required.

E. Chip Integration and Layout of Version 2

(a)

(b)

 FIGURE IV
(a) VERSION 2 FULL CHIP LAYOUT (b) FLOORPLAN

In addition to the inclusion of the SSCA and an
expanded SPI interface, Version 2 introduces dedicated
power domains for each of the major logic blocks, enabling
improved power efficiency through selective power gating.
The design from Version 1 is fully retained but spatially
condensed into the bottom third of the chip, freeing up the
upper two-thirds to accommodate the new SSCA module.
One of the primary layout challenges in integrating the
SSCA was its requirement of 20 separate SRAM blocks (16
banks of local working memory, an additional small scratch
memory, and instruction memory as part of the preexisting
IP; further, two SRAMs were included to store
type-converted input data), totaling over 250 KB of on-chip
storage. To address this, the SRAMs were strategically
arranged in a ring around the SSCA logic, minimizing
routing complexity and reducing access latency to support
high-throughput spectral analysis.

18525, ELECTRICAL AND COMPUTER ENGINEERING, CMU, MAY 2025 5

VI. SIMULATION RESULTS

A. Functionality Simulation (Block-Level)

We were able to verify the functionality of both the
ResNet and the CPU individually, as well as the entire
chip-level design. For the ResNet, the testbench converts the
provided test vector inputs from floating point to 16-bit
fixed point, feeds it to the core ResNet RTL, and converts
the output from 34-bit fixed point to floating point. The
output is then compared to the expected output generated
from a software golden model. The following results is what
we got from testing, which is accurate enough for the
purposes of this class:

TABLE I
RESNET SIMULATION RESULTS FOR PROVIDED TEST VECTORS

Expected Output Simulated Output

0.3183179795742034912 0.317378

0.05524525791406631470 0.0558033

-0.3927243053913116455 -0.39354

For the CPU, we ran several assembly programs
borrowed from 18-447 that focus on testing basic CPU
functionality and verified the results by monitoring the
resulting register file state. In RTL simulations, the design
passes basic arithmetic tests, branch tests, and memory tests.

B. Functionality Simulation (Chip-Level)

When conducting chip level verification in
simulation, we wrote RV-32I assembly programs that test
major aspects of our intended workloads: CPU workloads,
ResNet workloads, and SSCA workloads. These programs
were then input to the CPU Instruction SRAM by serially
transmitting the 32-bit instructions over SPI from the
testbench’s off-chip SPI master to the on-chip SPI slave
using the SPI protocol.

For CPU workloads, we used assembly programs as
described above that test basic functionality of the RISC-V
processor. We then compared the register file of the
VexRiscV to the expected register dump for the program
being tested.

For ResNet workloads, we wrote assembly
programs that store batches of input data to the address

range dedicated for the ResNet input SRAM, then use
MMIO instructions for setting the ResNet enable control
register and configuring the register holding the number of
invocations. The output via SPI is then captured by the
testbench using a SPI master that selects the chip and waits
for the 4 words of output data per invocation to be
transmitted. The output data captured off-chip is then
compared to the golden model’s test vector output.

For testing the SSCA workload from the chip’s top
level, two different programs of 32-bit SSCA-specialized
instructions were loaded into the SSCA’s instruction
memory using the input SPI. These programs were set to do
different things: one to read exclusively from the input
buffer, and one to read exclusively from local memory. This
was to confirm if both types of the functionality of the
SSCA were performing as expected and did not interfere
with the functionality of the other. The resulting values
stored in local memory once the SSCA was done computing
were then corroborated by Larry Tang’s testbench, to ensure
that the simulated SSCA was leading to the correct output
numbers. Finally, scanout of local memory was tested from
the top level, to ensure that it was not interfering with the
functionality of the ResNet and CPU, and could be sent to
the outside of the chip.

These simulation steps were completed at the RTL,
post-synthesis, and post-PnR level. All ResNet and CPU
workload tests passed for RTL, post-synthesis and post-PnR
simulation, and all SSCA tests passed for RTL simulation.

C. Power Simulation

We ran Voltus on our design, which reported the following
breakdown of the total power:

TABLE II
VERSION 1 POWER RESULTS

Internal Power 6.1473mW 72.0845%

Switching Power 1.9762mW 23.1736%

Leakage Power 0.4043mW 4.7419%

Total Power 8.5279mW 100%

The VDDA power domain which consists of all the
compute logic and the memories consumes 53%, the
VDDCLKGEN power domain, hosting the clock generator

18525, ELECTRICAL AND COMPUTER ENGINEERING, CMU, MAY 2025 6

consumes 0.1651%, and the IO consumes the remaining
power.

 FIGURE V
WAVEFORM OF TRANSIENT CURRENT

D. Comparison with Previous Work

 Overall, the performance of each individual block
as well as the whole chip all satisfies or exceeds our target
specifications while room for improvement remains.

E. Timing Reports

 FIGURE VI
SETUP TIME REPORT

 FIGURE VII
HOLD TIME REPORT

F. Chip Stats

TABLE III
SUMMARY OF CHIP STATISTICS

Process 28nm

Die Area 1mm2

IO 43

Memory 610 Kb

Clock Frequency 200 MHz

Power 8.5279 mW

VII. ETHICAL ISSUES

There are certain privacy issues associated with any
technology used to decode intercepted wireless
transmissions. The intent of this project is for use in a
defence context, but there are no features inherent to a
demodulator itself which prevent it from being used to
decode civilian communications, as many modulation
schemata are used for both civilian and military
transmission. In an extreme case, it could be potentially used
for mass monitoring of all communication frequencies. It
also could potentially intercept frequencies related to
medical devices, such as pacemakers.

We plan to work around this by restricting our
scanning frequencies and radii to those utilized by the edge
and defence environments in which it is deployed, as these
frequencies are not generally used by general-purpose
communications, nor by medical devices.

VIII. CLASS FEEDBACK

Feedback that we have for the course include:

● Additional office hours with a single TA over multiple
days rather than a single office hour each week with all
the TAs

● Earlier notice of the available projects before the start
of the semester in order to devise teams more
efficiently and start capstone projects sooner

18525, ELECTRICAL AND COMPUTER ENGINEERING, CMU, MAY 2025 7

IX. INDIVIDUAL CONTRIBUTIONS

The following table summarizes the roles and
responsibilities of each team member throughout the chip
development process:

TABLE IV
ROLES AND RESPONSIBILITIES IN CHIP DEVELOPMENT

RTL Design and Verification
RISC-V CPU Olivia

ResNet Alec, Majd
SSCA Julia, Rebecca (+ Larry)

SPI Alec, Olivia
Wishbone Bus Olivia

SRAM Alec
Top-level Verification (Pre, Post Synthesis)
ASIC Version 1 Olivia
ASIC Version 2 Julia, Rebecca

PnR Flow Development
ASIC Version 1 Layout Alec
ASIC Version 2 Layout Alec
ASIC Version 1 Signoff Olivia, Majd
ASIC Version 2 Signoff Alec

ASIC Version 1 DRC, LVS Everyone

X. ACKNOWLEDGEMENT

The authors would like to express their sincere
gratitude to Apple, Dr. John G. Wohlbier, and Larry Tang for
their generous support and for providing the essential
resources that made this project possible.

This material is based upon work funded and
supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally
funded research and development center.

XI. REFERENCES

[1] J. G. Wohlbier et al., "Co-design for Edge AI:
Modulation Recognition," presented at the 2025
Government Microcircuit Applications and Critical
Technology Conference (GOMACTech), Pasadena, CA,
Mar. 17-20, 2025

