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Abstract - This paper presents the design and integration 
of a RISC-V processor and hardware accelerator ASIC for 
real-time modulation recognition, targeting low-latency 
and power-efficient classification of radio signals. Two 
chips were developed from RTL to layout using TSMC 
28nm technology, leveraging Catapult HLS and 
Chisel/CIRCT for high-level synthesis. Version 1 integrates 
a VexRISC-V CPU and a Residual Neural Network 
(ResNet) accelerator within a 1mm × 1mm die area. 
Version 2 extends the architecture by incorporating a Strip 
Spectral Correlation Analyzer (SSCA) accelerator, 
increasing the die size to 2 mm × 1.25 mm. Both designs 
were functionally verified in simulation, with Version 1 
passing DRC and LVS checks to qualify for tapeout. 

I. INTRODUCTION 

The Modulation Recognition Acceleration project 
aims to integrate two specialized accelerator intellectual 
properties (IPs) with a RISC-V processor to improve 
performance for signal processing workloads as well as 
optimize the overall system for size, weight, and power. The 
two specialized accelerators are a hardware Residual 
Network (ResNet) for modulation classification, and a 
hardware implementation of the Strip Spectral Correlation 
Algorithm (SSCA) for cyclostationary feature extraction.  

With the increasing complexity of wireless 
communication and constrained spectrum resources, 
accurate and efficient modulation recognition is essential. 
Traditional software approaches lack the speed and energy 
efficiency required for real-time applications, particularly in 
edge or defense environments. This project addresses these 
limitations by designing an ASIC that integrates digital 
signal processing and machine learning in hardware. 

Version 1 of this project integrated a VexRISC-V 
open source CPU with the ResNet, and was taped out with 
complete pre-silicon verification. Version 2 extended 

Version 1 by integrating the SSCA IP with Version 1, and 
was verified in RTL simulation, but did not meet 
post-synthesis functionality. The specifics of the accelerator 
IPs, design, and integration will be discussed in section (III), 
with performance metrics in section (V).  

II. PRIOR WORK 

There are two previous implementations of this 
design, one written in Python and running on an NVIDIA 
Jetson AGX Orin and the other implemented as an 
FPGA-based SoC of each accelerator separately. The 
FPGA-based SoC with the ResNet accelerator was 2-5x 
faster than the reference implementation, with different 
configurations of the ResNet data flow accounting for the 
range of speedup. The FPGA-based SoC of the SSCA 
accelerator was 20x faster than the reference 
implementation.1  

III. DESIGN 

The proposed system integrates three major functional 
blocks: 

● ResNet Accelerator: Implements a convolutional 
neural network trained to recognize modulation 
schemes from IQ data inputs. Input data is 512 bits 
in fixed-point representation, and the accelerator 
outputs a probability distribution over signal types. 
RTL is generated using Catapult HLS from a 
PyTorch model. 

● SSCA Accelerator: Implements a radix-8 Strip 
Spectral Correlation Analyzer to extract 
cyclostationary features. It operates on 133,120 
32-bit floating point inputs and is built using Chisel 
and CIRCT. 

 



18525, ELECTRICAL AND COMPUTER ENGINEERING, CMU, MAY 2025                         2 

● RISC-V Processor: A VexRISC-V open source 
core that is generated using SpinalHDL for 
configurable features. Implements RV-32I ISA. 

 These blocks are connected to  memory-mapped 
SRAMs and MMIO control units via a shared Wishbone bus. 
I/O to and from the chip is handled using the SPI protocol. 

 

IV. VERSION 1 SYSTEM ARCHITECTURE 

 

 FIGURE I 
VERSION 1 SYSTEM BLOCKS DIAGRAM 

A. Memory System 

 The RISC-V core accesses a separate instruction 
memory and data memory using the VexRISC-V’s 
respective instruction and data bus. The CPU data memory 
is connected to the shared Wishbone bus and can be read and 
modified by memory instructions that address into the range 
dedicated for the CPU data SRAM.   

 Similarly, Version 1 has input data for the ResNet 
accelerator that is populated into the input SRAM by using 
store instructions addressing into the dedicated address 
range for the ResNet input SRAM. By using this 
memory-mapped architecture, input data for the hardware 
accelerator will be controlled by writing software that 
addresses into specified memory locations. 

B. Accelerator Control 

 Control for the ResNet accelerator is handled using 
memory-mapped IO, where store instructions that are 
addressed beyond the range of the memory system of the 
SoC (including CPU data memory and ResNet input SRAM) 
are interpreted as control signals for the accelerator. A store 
instruction to the address 0xFFFF_FFFF with a data payload 
of 0x1 is decoded as setting the enable signal for the ResNet 
accelerator. A separate control register holding a nine-bit 
value corresponding to the number of desired ResNet 

invocations is configured by writing the number of batches 
as the data payload of a store instruction to the address 
0xAAAA_AAAA. This number of invocations must match 
the number of batches of input data stored into the ResNet 
input SRAM, which can hold up to 254 batches of input 
data. When the ResNet accelerator is enabled, all batches 
will be processed in order. Effectively, these control registers 
are configured using software and specifically addressed 
store instructions. 

C. Accelerator Output Data 

 When the ResNet accelerator is enabled, each batch of 
input data is read from the input SRAM by an input SRAM 
controller that keeps track of the current read address and 
handles SRAM control signals, and the input data is 
processed through an invocation of the ResNet accelerator. 
When the ResNet accelerator asserts a done signal, the 
output is stored in an output data register. This register is 
part of the on-chip SPI slave module, and the data is output 
live to the off-chip master whenever the chip-select line 
(NSS) is asserted and the master is requesting data. 
Following the SPI protocol, the data is shifted serially and 
sent off-chip via the MISO pin. The output data is sent as 
four 32-bit words in little-endian order, with the least 
significant word transmitted first. Since the data is output 
live, the master must sample the data from the slave 
periodically.  

D. Chip Integration and Layout of Version 1  

 
(a) 
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(b) 

 FIGURE II 
(a) VERSION 1 FULL CHIP LAYOUT (b) FLOORPLAN 

 The floorplan of the 1mm × 1mm chip was carefully 
organized to minimize latency and routing complexity by 
placing core logic blocks adjacent to the I/O interfaces. 
Specifically, the VexRISC-V CPU and ResNet accelerator, 
were positioned near the SPI interface pins to reduce critical 
path lengths for data ingress and egress. Surrounding each 
logic block, corresponding SRAMs were placed to ensure 
local data availability with minimal wire routing congestion. 
This proximity-driven layout strategy helped reduce 
parasitic delays and enabled efficient power distribution 
through domain-specific rails.  

V. VERSION 2 SYSTEM ARCHITECTURE 

 

 FIGURE III 
VERSION 2 SYSTEM BLOCKS DIAGRAM 

For the integration of the expanded system that 
incorporates the SSCA accelerator along with the CPU and 
ResNet accelerator, several design changes were made to 
global integration as well as at the SSCA block level.  

A. SSCA Instruction Memory 

At the global integration level, one change that was 
made is the connection of the SSCA instruction memory to 
the Wishbone bus. The SSCA requires its own set of custom 
instructions which can be reconfigured, and these are 
streamed using the same SPI interface as the CPU 
instructions. The SSCA instructions follow a similar data 
flow as the input data for the accelerators, where store 
instructions are processed by the CPU which then stores data 
to a memory-mapped SRAM that is dedicated for the SSCA 
instructions.  

B. SSCA Local Memory Pre-population 

At the SSCA block level, a local memory SRAM 
must be populated before an invocation of the SSCA 
accelerator is called. The full local memory must be 
initialized with the correct twiddle coefficients required for 
the fast Fourier transform upon which the SSCA is based 
before any calculation is initiated. To integrate this into the 
overall system, a separate SPI interface is dedicated for this 
purpose, with a complete set of SPI pins set aside for the SPI 
slave module that handles writing to this local memory 
SRAM, and an initialization mode is used to indicate when 
to write those coefficients directly into the local memory.  

C. Floating Point Converter & Shared Input SRAM 

The SSCA requires 32-bit floating-point data, while 
the ResNet requires 16-bit fixed-point data. To 
accommodate this while still guaranteeing the same data is 
used for both accelerators, the chip accepts input data as 
fixed-point and a fixed-to-float converter is connected to the 
SSCA’s input buffer.  

Additionally, since the ResNet accelerator and the 
SSCA accelerator use the same input data, both use a single 
input data SRAM. Control units are implemented to 
facilitate the data transfer and reads from the shared SRAM 
to the ResNet or SSCA accelerator. 
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D. Accelerator Control and MMIO 

In the expanded system, the accelerator control 
signals are shared between both the SSCA and ResNet 
accelerators. When the accelerator enable control register is 
set, both accelerators are enabled. 

When the accelerators are enabled, an input handler 
coordinates reads from the shared input data SRAM to move 
batches of input data to the ResNet accelerator and all input 
data into the SSCA accelerator’s input buffer since the 
SSCA requires its input buffer to be full before it starts 
computing. Once calculations are completed, the SSCA 
flags that it is done and the output data can be found in the 
local memory. A stream-out mode, when activated, allows 
addresses in local memory to be read directly to the top-level 
and streamed out through the SPI interface, so no dedicated 
output buffer is required. 

E. Chip Integration and Layout of Version 2 
 

  
(a) 

      
(b) 

 FIGURE IV 
(a) VERSION 2 FULL CHIP LAYOUT (b) FLOORPLAN 

In addition to the inclusion of the SSCA and an 
expanded SPI interface, Version 2 introduces dedicated 
power domains for each of the major logic blocks, enabling 
improved power efficiency through selective power gating. 
The design from Version 1 is fully retained but spatially 
condensed into the bottom third of the chip, freeing up the 
upper two-thirds to accommodate the new SSCA module. 
One of the primary layout challenges in integrating the 
SSCA was its requirement of 20 separate SRAM blocks (16 
banks of local working memory, an additional small scratch 
memory, and instruction memory as part of the preexisting 
IP; further, two SRAMs were included to store 
type-converted input data), totaling over 250 KB of on-chip 
storage. To address this, the SRAMs were strategically 
arranged in a ring around the SSCA logic, minimizing 
routing complexity and reducing access latency to support 
high-throughput spectral analysis.  
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VI.  SIMULATION RESULTS 

A. Functionality Simulation (Block-Level) 

We were able to verify the functionality of both the 
ResNet and the CPU individually, as well as the entire 
chip-level design. For the ResNet, the testbench converts the 
provided test vector inputs from floating point to 16-bit 
fixed point, feeds it to the core ResNet RTL, and converts 
the output from 34-bit fixed point to floating point. The 
output is then compared to the expected output generated 
from a software golden model. The following results is what 
we got from testing, which is accurate enough for the 
purposes of this class: 

TABLE I 
RESNET SIMULATION RESULTS FOR PROVIDED TEST VECTORS 

Expected Output Simulated Output 

0.3183179795742034912 0.317378 

0.05524525791406631470 0.0558033 

-0.3927243053913116455 -0.39354 

For the CPU, we ran several assembly programs 
borrowed from 18-447 that focus on testing basic CPU 
functionality and verified the results by monitoring the 
resulting register file state. In RTL simulations, the design 
passes basic arithmetic tests, branch tests, and memory tests.  

B. Functionality Simulation (Chip-Level) 

When conducting chip level verification in 
simulation, we wrote RV-32I assembly programs that test 
major aspects of our intended workloads: CPU workloads, 
ResNet workloads, and SSCA workloads. These programs 
were then input to the CPU Instruction SRAM by serially 
transmitting the 32-bit instructions over SPI from the 
testbench’s off-chip SPI master to the on-chip SPI slave 
using the SPI protocol.  

For CPU workloads, we used assembly programs as 
described above that test basic functionality of the RISC-V 
processor. We then compared the register file of the 
VexRiscV to the expected register dump for the program 
being tested.  

For ResNet workloads, we wrote assembly 
programs that store batches of input data to the address 

range dedicated for the ResNet input SRAM, then use 
MMIO instructions for setting the ResNet enable control 
register and configuring the register holding the number of 
invocations. The output via SPI is then captured by the 
testbench using a SPI master that selects the chip and waits 
for the 4 words of output data per invocation to be 
transmitted. The output data captured off-chip is then 
compared to the golden model’s test vector output. 

For testing the SSCA workload from the chip’s top 
level, two different programs of 32-bit SSCA-specialized  
instructions were loaded into the SSCA’s instruction 
memory using the input SPI. These programs were set to do 
different things: one to read exclusively from the input 
buffer, and one to read exclusively from local memory. This 
was to confirm if both types of the functionality of the 
SSCA were performing as expected and did not interfere 
with the functionality of the other. The resulting values 
stored in local memory once the SSCA was done computing 
were then corroborated by Larry  Tang’s testbench, to ensure 
that the simulated SSCA was leading to the correct output 
numbers. Finally, scanout of local memory was tested from 
the top level, to ensure that it was not interfering with the 
functionality of the ResNet and CPU, and could be sent to 
the outside of the chip. 

These simulation steps were completed at the RTL, 
post-synthesis, and post-PnR level. All ResNet and CPU 
workload tests passed for RTL, post-synthesis and post-PnR 
simulation, and all SSCA tests passed for RTL simulation.  

C. Power Simulation 

We ran Voltus on our design, which reported the following 
breakdown of the total power: 

TABLE II 
VERSION 1 POWER RESULTS 

Internal Power 6.1473mW 72.0845% 

Switching Power 1.9762mW 23.1736% 

Leakage Power 0.4043mW 4.7419% 

Total Power 8.5279mW 100% 
 

The VDDA power domain which consists of all the 
compute logic and the memories consumes 53%, the 
VDDCLKGEN power domain, hosting the clock generator 
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consumes 0.1651%, and the IO consumes the remaining 
power. 
 

 FIGURE V 
WAVEFORM OF TRANSIENT CURRENT 

D. Comparison with Previous Work 

 Overall, the performance of each individual block 
as well as the whole chip all satisfies or exceeds our target 
specifications while room for improvement remains. 

E. Timing Reports 

 

 FIGURE VI 
SETUP TIME REPORT 

 

 FIGURE VII 
HOLD TIME REPORT 

 

 

F. Chip Stats 

TABLE III 
SUMMARY OF CHIP STATISTICS  

Process 28nm 

Die Area 1mm2 

IO 43 

Memory 610 Kb 

Clock Frequency 200 MHz 

Power 8.5279 mW 

VII. ETHICAL ISSUES 

There are certain privacy issues associated with any 
technology used to decode intercepted wireless 
transmissions. The intent of this project is for use in a 
defence context, but there are no features inherent to a 
demodulator itself which prevent it from being used to 
decode civilian communications, as many modulation 
schemata are used for both civilian and military 
transmission. In an extreme case, it could be potentially used 
for mass monitoring of all communication frequencies. It 
also could potentially intercept frequencies related to 
medical devices, such as pacemakers.  

We plan to work around this by restricting our 
scanning frequencies and radii to those utilized by the edge 
and defence environments in which it is deployed, as these 
frequencies are not generally used by general-purpose 
communications, nor by medical devices.   

VIII. CLASS FEEDBACK 

Feedback that we have for the course include: 

● Additional office hours with a single TA over multiple 
days rather than a single office hour each week with all 
the TAs 

● Earlier notice of the available projects before the start 
of the semester in order to devise teams more 
efficiently and start capstone projects sooner 
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IX. INDIVIDUAL CONTRIBUTIONS 

The following table summarizes the roles and 
responsibilities of each team member throughout the chip 
development process: 

TABLE IV 
ROLES AND RESPONSIBILITIES IN CHIP DEVELOPMENT 

RTL Design and Verification 
RISC-V CPU Olivia 

ResNet Alec, Majd 
SSCA Julia, Rebecca (+ Larry) 

SPI Alec, Olivia 
Wishbone Bus Olivia 

SRAM Alec 
Top-level Verification (Pre, Post Synthesis) 
ASIC Version 1 Olivia 
ASIC Version 2 Julia, Rebecca 

PnR Flow Development 
ASIC Version 1 Layout Alec 
ASIC Version 2 Layout Alec 
ASIC Version 1 Signoff Olivia, Majd 
ASIC Version 2 Signoff Alec 

ASIC Version 1 DRC, LVS Everyone 
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