

Austin Physical Design and Integration Intern Project

Summer 2025 | Alec Bender | IBM z18 | Samsung 3nm

Life of an L3 Integrator

Summary

- CPU Cache memory
- Stores frequently accessed data
- · Reduces data fetch time
- Comprised of SRAM

L3 Characteristics

- Speed: 2.8 GHz (half speed of core)
- Memory: 36MB Cache, 12 instances (432 MB total)
- Size: 7000 μm x 3000 μm, 12 instances (252 mm² total, 40% total chip area)

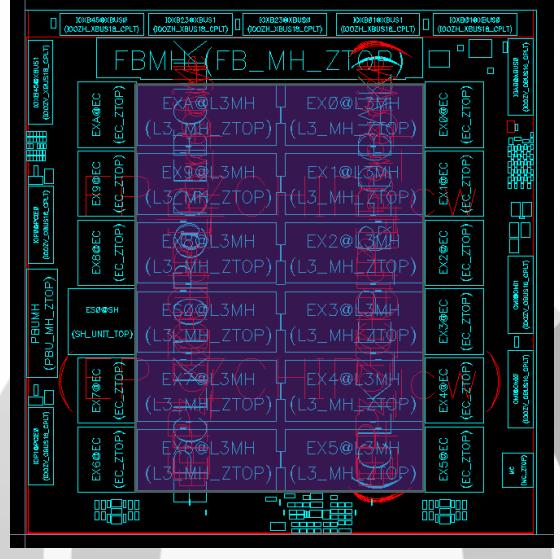


Figure 1: z18 chip top level (L3 cache highlighted), zrh10 ep 257021 0 T1 fs

Goal

- Continually reduce FOM until a timing wall is met
 - FOM (Figure of Merit) evaluates performance, related to timing and slack analysis
 - Timing wall is where PHYSICAL design improvements are negligible (LOGIC potentially can improve)

How

Improve the generic build methodology for L3

The L3 Integration Flow

MSC

- Methodology Script Cutting
 - Guide flow for dividing up small blocks (macros) and generating large blocks (continents)
- Part of the S2L (Small to Large) methodology

S2L Methodology

- Uses Pangea
- Fully abutted hierarchy
- Separate continents grouped together by functionality or spatial relationships

MSF

- Methodology Script Flow
- Produces populated Continents

Large Block MSI

- Methodology Script Integration
- Guide flow for integration construction
- · Connects the constructed continents together

S2L Workflow

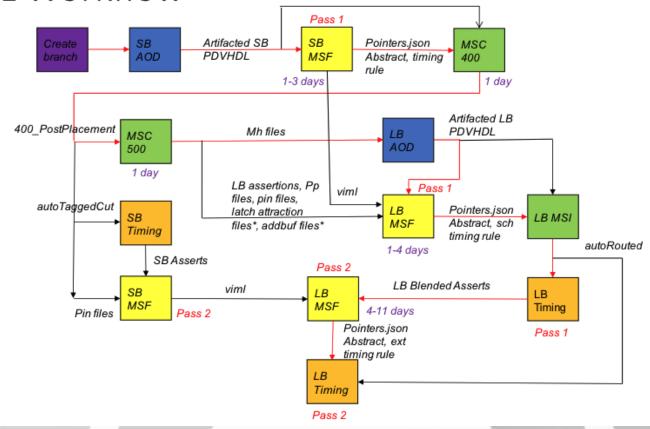


Figure 2: S2L Workflow, s2l_education.pptx by

Jesse Surprise

Knobs

- Collection of run IDs that control the behavior of a particular step or process within the flow
- Run IDs can be combined and are separated by a "."

Alec	L3D1	deleted	hlbs_latchopt.hlbs_parent.iclless.flat_dsa
Alec	L3D1	deleted	hlbs_parent.iclless.flat_dsa
Alec	L3D1	#	flat_dsa.flat_pfcc.hlbs_parent.iclless.tvis.250526v2
Alec	L3D1	-	flat_dsa.hlbs_parent.iclless.tvis.250526v2
Alec	L3D1	+	rrbucket.flat_dsa.flat_pfcc.hlbs_parent.iclless.tvis.250526v3
Alec	L3D1		alec.hideBx.flat_dsa.hlbs_parent.iclless.tvis.250526v4
Alec	L3D1	-	flat_dsa.flat_pfcc.hlbs_parent.iclless.tvis.250526v4
Alec	L3D1	COMP	flat_dsa.hlbs_parent.iclless.tvis.250526v4
Alec	L3D1	-	hideBx.flat_dsa.hlbs_parent.iclless.tvis.250526v4
Alec	L3D1	2	rrbucket.flat_dsa.flat_pfcc.hlbs_parent.iclless.tvis.250526v4

Figure 3: Example Runs with Various Run IDs

Flattening

 Eliminates hierarchical boundaries pre-synthesis, giving the flow control in placing latches

Figure 4: L3D1 Latch Flattened

MSC

- Serves as the input to cutting the large block model
- Cuts the continent and places macros in their respective continents
- Small block model allows for fast timing feedback
- Completes in a few days

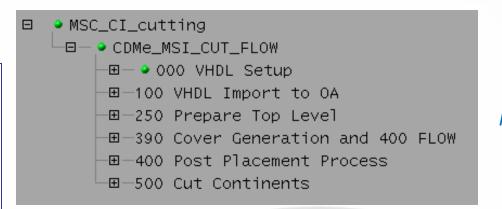


Figure 5: MSC Flow

Figure 6: Cut Continents with Small Blocks, MSC Output

MSF

- HLBS (Hierarchical Large Block Synthesis)
 - Constructs continents and connects logic
 - Can utilize "flattening"
 - Completes in more than a week

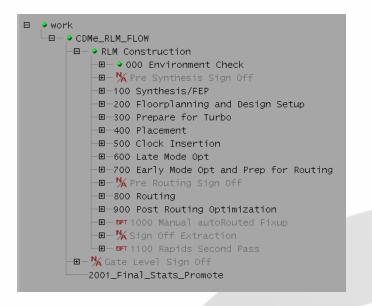


Figure 7: MSF Flow

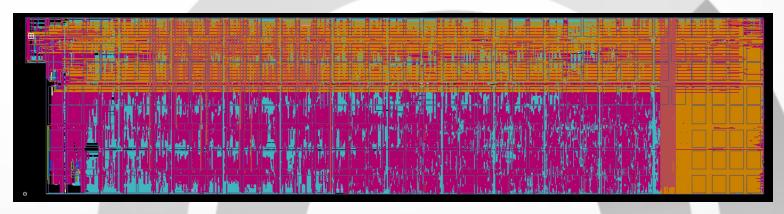


Figure 8: L3D1 Populated with Nets/Logic, MSF Output

LBMSI

- Integrates
 continents back
 to a simplified
 top level
- Completes in about 6 hours

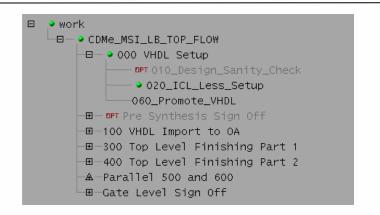


Figure 9: MSI Flow

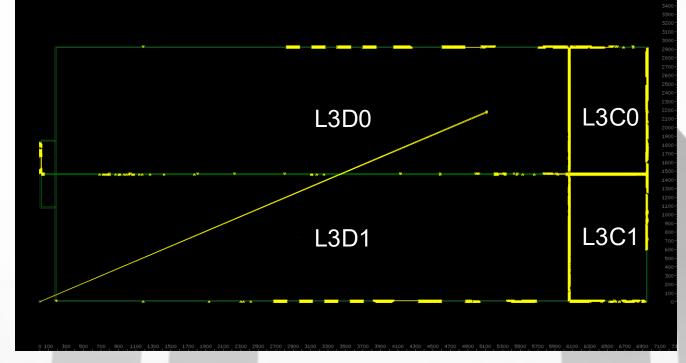


Figure 10: L3D1 Populated with Pins, MSI Output

Contributions in Advancing the Flow

 Continent boundaries had multiple pins for the same net

Figure 11: Net Double Crossing Continents (L3C1 \rightarrow L3D1 \rightarrow L3D0 \rightarrow L3D1)

Investigation

 Nets capable of reroute without double boundary crossing using iBuf

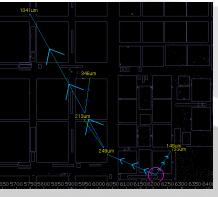


Figure 12: Net Fixed with *iBuf* (L3C1 \rightarrow L3D1 \rightarrow L3D0)

Solution

 Debugging from Pangea and parms updated

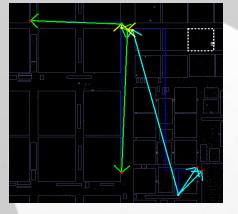


Figure 13: Net with Correct Behavior (L3C1 \rightarrow L3D1 \rightarrow L3D0)

First continent builds

• wSlack: -3.5k

• FOM: -1.9M

Investigation

- Worst 40 nets had major routing detours
- Synthesis flattened buffers and routed limited fan outs in a point to point fashion
- Manual reroute in iBuf demonstrated significant improvement during the flow

Figure 14: Net with Routing Detour

Solution

- Did not allow flattening of these buffers
- After Fix
 - wSlack: -500 (down 86%)
 - FOM: -350k (down 81%)

 Massive increase in congestion (wACE4 95 to 140-270) during early optimization (step 620)

Solution

- EDA (pds-hlbs) suggested to hide B wires
- Eliminating usage of highest available wire until necessary
- New hideBx run ID

Results

- Significant decrease in final wACE4 and FOM
- flat dsa.hlbs parent.iclless.tvis.250526v4
- wACE4: 121 → 95
- FOM: $-1,710,142 \rightarrow -952,964$
- hide45.flat dsa.flat pfncc. hlbs parent.iclless.tvis.250707v2:
- wACE4: 184 → 100
- FOM: $-729.851 \rightarrow -541.098$

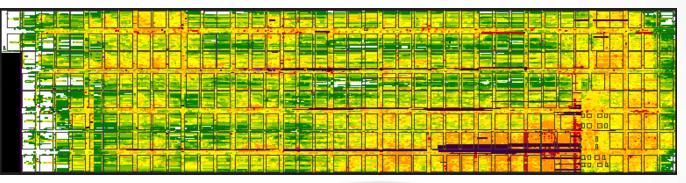


Figure 15: L3D1 Congestion Map (All Metal Layers)

L3D1 B1

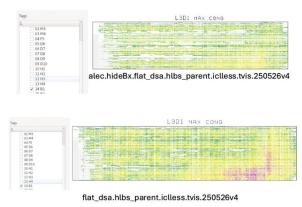


Figure 16: L3D1 Congestion Map (B1 Metal), w/ HideBx Top w/o HideBx **Bottom**

L3D1 H3

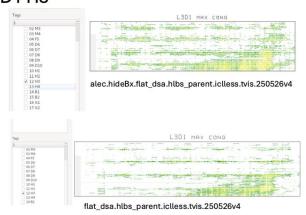


Figure 17: L3D1 Congestion Map (H3 Metal), w/ HideBx Top w/o HideBx **Bottom**

 We do not necessarily know the scale that latches move during flattening

Solution

- Curated a Python script to summarize latch displacement
 - Parses .gz files, matches latches based on name and instance hierarchy, and computes coordinate differences

Results

- Output summary, csv, and histograms
- Showed significant movement much greater than hypothesized
 - Some latches moved as much as 8 SRAMs away

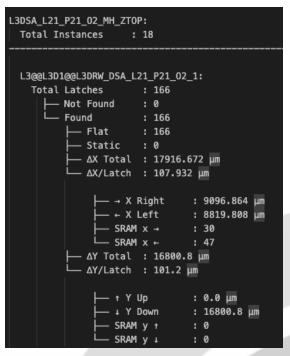


Figure 18: Summary Output Excerpt

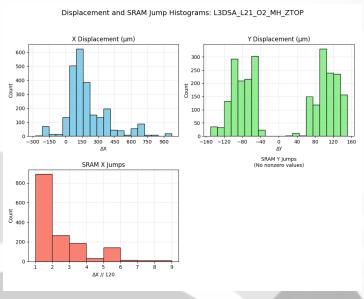


Figure 19: Latch Name Plot

Instance	default_x	default_y	flat_x	flat_y	dx	dy	dX_SRAM	dY_SRAM	Displacemen	Status	X_Dir	Y_Dir
L3@@L3D1@	467.52	638	1431.744	561.2	964.224	-76.8	8	0	967.278	Mismatch	Right	Down
L3@@L3D1@	467.52	638.4	1438.56	561.2	971.04	-77.2	8	0	974.104	Mismatch	Right	Down
L3@@L3D1@	467.52	638.8	1438.56	561.2	971.04	-77.6	8	0	974.136	Mismatch	Right	Down
L3@@L3D1@	467.52	638.8	1431.744	561.2	964.224	-77.6	8	0	967.342	Mismatch	Right	Down
L3@@L3D1@	467.52	638.4	1431.744	561.6	964.224	-76.8	8	0	967.278	Mismatch	Right	Down
L3@@L3D1@	467.52	637.2	1438.56	561.6	971.04	-75.6	8	0	973.978	Mismatch	Right	Down
L3@@L3D1@	467.52	636.8	1438.56	561.6	971.04	-75.2	8	0	973.947	Mismatch	Right	Down
L3@@L3D1@	467.52	636.4	1438.56	560.8	971.04	-75.6	8	0	973.978	Mismatch	Right	Down
L3@@L3D1@	467.52	636.8	1431.744	560.8	964.224	-76	8	0	967.215	Mismatch	Right	Down

Figure 20: CSV Output Excerpt

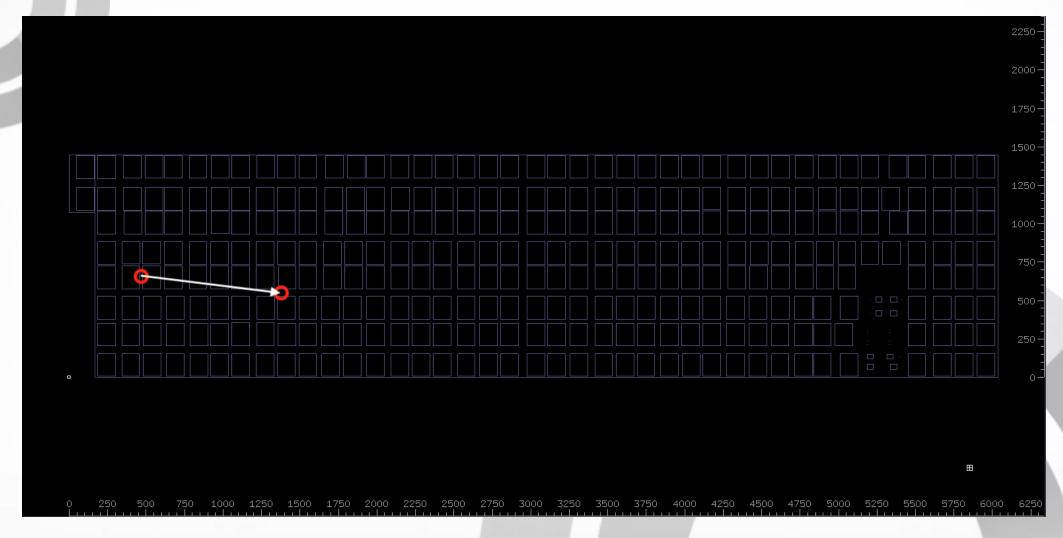
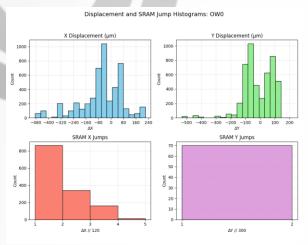
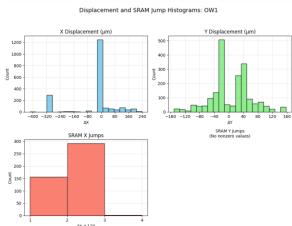




Figure 21: Net with Latch Displacement of 8 SRAM Widths

Displacement and SRAM Jump Histograms: OW2 SRAM Y Jumps (No nonzero values) SRAM X Jumps

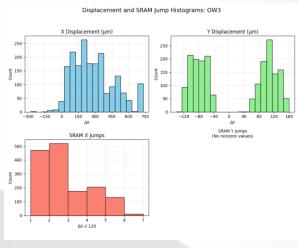


Figure 22: OW0 Plot

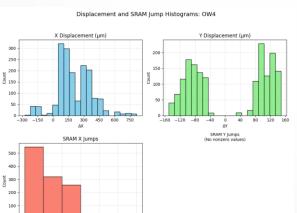


Figure 23: OW1 Plot

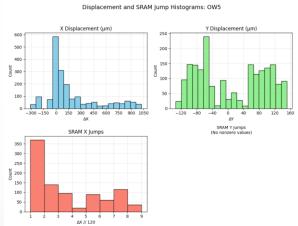


Figure 24: OW2 Plot

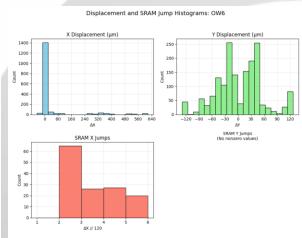


Figure 25: OW3 Plot

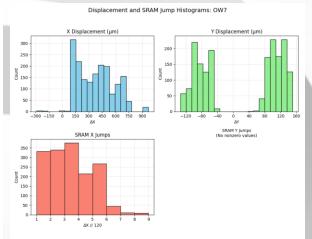


Figure 26: OW4 Plot

Figure 27: OW5 Plot

Figure 28: OW6 Plot

Figure 29: OW7 Plot

Project Overview

L3D1 Start (June 2025)

- FOM ≈ -1.9M
- wSlack ≈ -3.5k

L3D1 Current (August 2025)

- FOM \approx -300k to -700k
- wSlack ≈ -200 to -400

PD Integration

Timing Metrics

Buffer Solutions

Memory Cache

Calist Friedman

Asher Lazarus

Jesse Surprise

Chandler Brown

Jonathan Chor

Ben Stolt

David Yan

Malkam Hawkins

Nicole Strevig

